AP Test Question 2007 Part A - With Calculator

3) The functions f and g are differentiable for all real numbers, andg is strictly increasing. The table above gives the values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.	x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
	1	6	4	2	5
	2	9	2	3	1
	3	10	-4	4	2
	4	-1	3	6	7

a) Explain why there must be a value r for $1<r<3$ such that $h(r)=-5$.

$$
\begin{aligned}
& h(1)=3 \\
& h(2)=4 \\
& h(3)=-7
\end{aligned}
$$

Since f and g are differentiable, they must be continuous, thus h is continuous. Thus, by the Intermediate Value Theorem, h must take on all values of [3,-7] for $r \varepsilon[1,3]$.

3) The functions f and g are differentiable for all real numbers, andg is strictly increasing.	x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
	1	6	4	2	5
The table above gives the values of the	2	9	2	3	1
ctions and their first derivatives at	3	10	-4	4	2
	4	-1	3	6	7

b) Explain why there must be a value c for $1<c<3$ such that $h^{\prime}(c)=-5$.

$$
\begin{aligned}
& h(1)=3 \\
& h(3)=-7
\end{aligned} \quad m=\frac{-7-3}{3-1}=-5
$$

The Mean Value Theorem guarantees a $c \varepsilon(1,3)$ such that $h(c)=-5$ because the slope of the secant line through $h(1)$ and $h(3)$ is equal to -5 .
3) The functions f and g are differentiable for all real numbers, and g is strictly increasing.
The table above gives the values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

c) Let w be the function give by $w(x)=\int_{1}^{g(x)} f(t) d t$. Find the value of $w^{\prime}(3)$.

$$
w^{\prime}(3)=-2
$$

3) The functions f and g are differentiable for all real numbers, and g is strictly increasing.
The table above gives the values of the functions and their first derivatives at selected values of x. The function h is given by $h(x)=f(g(x))-6$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	6	4	2	5
2	9	2	3	1
3	10	-4	4	2
4	-1	3	6	7

d) If g^{-1} is the inverse function of g, write an equation for the line tangent to the graph of $y=g^{-1}(x)$ at $x=2 . \quad y=\frac{1}{5} x+\frac{3}{5}$

